Correlated Coulomb Drag in Capacitively Coupled Quantum-Dot Structures.
نویسندگان
چکیده
We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs)-a bias-driven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach that accounts for higher-order tunneling (cotunneling) processes as well as energy-dependent lead couplings, and identify a mesoscopic Coulomb drag mechanism driven by nonlocal multielectron cotunneling processes. Our theory establishes the conditions for a nonzero drag as well as the direction of the drag current in terms of microscopic system parameters. Interestingly, the direction of the drag current is not determined by the drive current, but by an interplay between the energy-dependent lead couplings. Studying the drag mechanism in a graphene-based CQD heterostructure, we show that the predictions of our theory are consistent with recent experiments on Coulomb drag in CQD systems.
منابع مشابه
Bistability in the Electric Current through a Quantum-Dot Capacitively Coupled to a Charge-Qubit
We investigate the electronic transport through a single-level quantum-dot which is capacitively coupled to a charge-qubit. By employing the method of nonequilibrium Green's functions, we calculate the electric current through quantum dot at finite bias voltages. The Green's functions and self-energies of the system are calculated perturbatively and self-consistently to the second order of inte...
متن کاملMesoscopic Coulomb drag, broken detailed balance, and fluctuation relations.
When a biased conductor is put in proximity with an unbiased conductor a drag current can be induced in the absence of detailed balance. This is known as the Coulomb drag effect. However, even in this situation far away from equilibrium where detailed balance is explicitly broken, theory predicts that fluctuation relations are satisfied. This surprising effect has, to date, not been confirmed e...
متن کاملQuantum phase transitions in capacitively coupled two-dimensional Josephson-junction arrays
Quantum phase transitions in two layers of ultrasmall Josephson junctions, coupled capacitively with each other, are investigated. As the inter-layer capacitance is increased, the system at zero temperature is found to exhibit an insulator-to-superconductor transition. It is shown that, unlike in the case for one-dimensional arrays with a similar coupling configuration, the transition cannot be...
متن کاملCotunneling Drag Effect in Coulomb-Coupled Quantum Dots.
In Coulomb drag, a current flowing in one conductor can induce a voltage across an adjacent conductor via the Coulomb interaction. The mechanisms yielding drag effects are not always understood, even though drag effects are sufficiently general to be seen in many low-dimensional systems. In this Letter, we observe Coulomb drag in a Coulomb-coupled double quantum dot and, through both experiment...
متن کاملConductance suppression due to correlated electron transport in coupled double quantum dots
The electrostatic interaction between two capacitively coupled metal double-dots is studied at low temperatures. Experiments show that when the Coulomb blockade is lifted by applying appropriate gate biases to both double-dots, the conductance through each double-dot becomes significantly lower than when only one doubledot is conducting. A master equation is derived for the system and the resul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 116 19 شماره
صفحات -
تاریخ انتشار 2016